Eeveonf www.devconf.ru

Domain driven
design

Alexander Kudrin

N G e, R

JAN

A-MARKETS

Your online broker

l First principle

“Our highest priority is to satisfy the customer
through early and continuous delivery
of valuable software.”

Agile Manifesto

Eevgﬂnf www.devconf.ru

l Doom of your project

®© © e ©® ® e

start on market normal need refactoring coma

39V€0I1f www.devconf.ru

B For what?

. Fast delivery

We want

. Separate code
. Reusable code
. Clear code & Understandable code

. Human resource scalable project

Eevgﬂnf www.devconf.ru

l Big blue book

DRISEEGA

Foreword by Martin Fo‘wle;

EGVQOI'If www.devconf.ru

push state change with

; REPOSITORIES
’ access with
e

access with
xpress change with|
express model with_—

act as root of
express identity with \
/ encapsulate AGGREGATES
express state & with
omputation with \

VALUE
OBJECTS .
encapsulate with

model gives structure to encapsulate with

FACTORIES

isolate domain
expressions with

define model within LAYERED encapsulate with
ARCHITECTURE

UBIQUITOUS LANGUAGE

cultivate rich

madelwith kjre‘i‘f’i::f:yel CONTINUOUS
INTEGRATION
SHARED
enter KERNEL SHARED
KERNEL
CORE DOMAIN interdependen

contexts form __ overlap allied
contexts through

CUSTOMER
A elate allied contexts as ISUPPLIER
work in

assess/overview
autonomous, clean

relationships with
avoid overinvesting in minimize translation
CONFORMIST

support multiple
segregate the 'Z?ns throu‘ph
GENERIC conceptual messes free teams 9 OPEN HOST
SUBDOMAINS togo SERVICE
translate and insulate loosely couple
unilaterally with cori/lexls formalize
BIG BALL OF MuD i SEPARATE through
ANTI- WAYS PUBLISHED
CORRUPTION LANGUAGE

LAYER

39V€0I1f www.devconf.ru

l Domain & bounded context

. Domain in
]
Bounded context + Domain = | bounded cornbost

Eevgﬂnf www.devconf.ru

findPerformer

goForPizza

pizza

delivery

Eevgﬂnf www.devconf.ru

l Core domain

39V€0I1f www.devconf.ru

l Dividing by roles

sevZonf

Pizzeria

Delivery

Clients

www.devconf.ru

l Context map

Pizzeria
Orders :
(core d \ain) Delivery
External Payment
Clients system Billing
\/\

Managment panel Statistic

39V€0I1f www.devconf.ru

l Subdomain structure

elopment/tmp/pizzeria rails; fhome /kudrin/development/tmp/
app/
auth/
ine menu/
» controllers news/
» helpers » scheduler/
» jobs config/
» mailers db/
» models docs/
» Views kube/
bin lib/
config log/
db spec/

www.devconf.ru

v o alua befl ¢

41:' U. ({”.I mredl
capricena i cry
Inu]'uu" au fio c1
f .'rm'll'lll(cu fom
— 1. Cf au 1br herbu
frudu fomma pry

llue deducre. ur

g “i\\//}yﬂumi“ NICTIIL A1)
= S /3 Au uencrt wn

- - .
e P mqQredrr uf
- <

rre fup aquer. & b
Uf er & pfr 1l 0) 4
S o yo o
fiea : enfiodr e {

e |

l Task: Get a beer

Imperative:

1.
2.

3.

(&) =~

Take 2 dollars

Go to the shop at the
corner

Take 2 cans from the
fridge

White Budweiser

Or Stella Artois if
there is no Budweiser.

sevZonf

Declarative:

| want something light,
crisp and refreshing.
With the fruit notes
which remains in the
background and not
overwhelming. Something
not too hot and very
drinkable. And little
bit cold.

www.devconf.ru

Authorization system
The authorization system is responsible for identifying a particular user.

Entities:
User is characterized by:

Name and surname
Email, unique
Phone

Processes:

Check in - During the registration process, we create a new user, ask him to confirm his email and phone, authorize the user for 1 day
(during this time he is obliged to confirm the email and phone).

Login In - the process of authorization, we write out to the user an authentication key for a month. Only a user with a verified phone and
email address can authenticate.

Logout - After logging out, the user will need to log in again to access the system.

Email Verification - The user's email comes with a link. Opening the link, the user reports that this is his email. The link is valid day.
Phone Verification - A text message comes to the user's phone, answering which he confirms that this is his phone. The code is valid for a
day.

Password Recovery - The user enters his email, a link comes to him, on which he will be asked to change the password. The link is valid
for 2 hours.

Authorization on other domains - Using a depreciation key, we can access accounts on other domains. If the passkey does not match, a
redirect to the authorization page. If it successfully passed, the user will be redirected to the main page of the original domain.

www.devconf.ru

l Variative architecture

PULL KNOB TO START-PUSH TO STOP

—_— Creat

REPRESENTATION ® /" Nhuoon

© |/ COLLECTING
—— Processing RESPONCE CODE
TEMPLATE / SERIALIZER ~ O\
(4 ______I.NTERACTOR
b SERVICES
e L\ /)/ PROCESSING
STORAGE .
. \ REPO/ ADAPTER
Representation ,
DB / EXTERNALAPI MAPPER
l l l 6 =suprLe &g = cLEANING © - seLecve

Eevaonf www.devconf.ru

Representation layer

Endpoint Tayer

o
O /= — @ e >
r - 1 g
5 IPresentatlon level | 5
b — [. o
3 3 tati . 2
g | 2 Representation - . ” - Responce | | g
& S iew Serializer tatic code : <
3 | | a3

L e pe e ma tee o m s g e ms s e e g s aw s < A

Eevgﬂnf www.devconf.ru

l Storage layer

[Endpoint layer |

Ir_____GaEwaEveT____'; :
| Repository layer | B | 4
W g
| : g |. ¥5
| Handler . obase Mapper | g | e
| Ao Y [
I — |
Adapter layer | ‘5 '
I 5 L
5 | | External it
% torage | Handler AP Mapper :% ji §
O = & —| =], ‘s
o 2l
—— _ L & Responce model 4 :
5]
>
o
c |\l
User | |
| |
| I
Dy o e o s e ne e o 2],

Eevgﬂnf www.devconf.ru

)

lass Repository < Repositories::Sequel
def create(user)
row = mapper.to_rouw(entity)
users.returning.insert(rou).first
user
na

ss Adapter < Adapters::Rest
def create(user)
post Serializer::User.new(user).to_json

ena

def find(user_id)
json = get id: user_id
Builder::Users.build(json)

end

def find(user_id)

roW = users.where(id: user_id).first

Entites::User.new(mapper.from_rou(rou))
end def update(user, sic)

json = post Serializer::User.new(with).to_json, : user.id

def update(user,) Builder::Users.build(json)

users.where(id: users.id).updater(with) end

user.set_attributes with

user b6 def delete(user_id)
end delete id: user_id

NN O U B W N e

1

BOO

delete(user_id)

Q

1
2
3
4
5
6
7
8
9
18
1
12
13
14
15
16
17
18

>
Q m

L S S S —
VOO NV E WN = ® 00NN & WN -

def delete(user_id)
users.uwhere(id: user_id).delete

end

[ASERAS IR AN B oS]
wmnN - o

def users
DB[

end

[AS I A BN AS BN o)
~N oo

def mapper

28 Mappers::Entity
29 end

30 _end

3@V€0nf www.devconf.ru

l Process layer

Endpoint layer]

Interactor layer | r————— 1
Use case level

. T Gaevayieval | | 23k
| > .=g Processing > | Repository layer | | | Service | i5 :
= (B '
o ‘1w ;
S | I | | w2 &
|) Command I @ .
O Responce model : § 2
| [Adapter layer] Entity] | ¢ 5
N I o '8
5 | Guard | & '
E | ValueObjects | i
g P o

Perprrm——reel [Pmes | | ————— i

User

Eevgﬂnf www.devconf.ru

Temperature
iclude Comparable

def initialize(params)
params.each { |k, v| send(:"#{k}=", v) }

jef initialize(value,
@value = Float(value)

end
ena

N = O VOO NNV & WN -

@unit = at

1 end 1 def height=(height)
1 1 @fheight = Values::Height.new(height)
1 def <=>(another) 1 end
13 convert(to: another.unit).value <=> another.value 13

end 14 def weight=(height)

15 @fheight = Values::Weight.new(weight)

def convert(to:) 16 end
17 v = case { unit => to } 17
18 when { => } then (value - 32) * 5/ 18 def birthday=(day)
19 when { => } then (value * 9/5) + 19 @birthday = Date.parse(day)
20 else value 20 end
21 end 21 nd

3 m

Temperature.new v.round(2), : to 22 end

f451 = Values::Temperature.neu
28 f451.convert

29 & => value: 2 younits e
30 [j451 >= Values::Temperature.new(108, at: :c)
31 & => true

sevZonf

www.devconf.ru

l Scenario

basic flow alternative flows

. insert card A1 invalid card

. validate card A2 non-standard amount
. select cash withdrawal A3 receipt required

. select account A4 insufficient funds

. confirm availability of in ATM

funds A5 insufficient funds in
. return card account
. dispense cash A6 would cause overdraft

A7 card stuck
A8 cash left behind

Interactor

ule Interactors
ass CookingPielithCabbage < LunaPark::Interactors::Sequence

TEMPERATURE = Values::Temperature(X 2)

def call!
Services::CheckProductsAvailability.call : ingredients
dough = Services::BeatDough.call : Repository::Products.get(beat_ingredients)
filler Services::MakeCabbageFiller.call : Repository::Products.get(filler_ingredients)
pie = Services::MakePie.call dough, : filler
bake = Services::BakePie.neu pie, : TEMPERATURE
sleep 5.min until bake.call

def returned_data
ie
nd

def ingredients_list
beat_ingredients_list + filler_ingredients_list

Eevaonf www.devconf.ru

DEFARULT_GULP_SIZE = Values::Volume.neu(

def initializer(2 :)
@milk_customer = milk_customer
@gl glass

~N O U B WM e

o @

raise Errors::Processing, ' ' if glass.content.volume < gulp_size

W N - ©

— -

until glass.empty? do
gulp = Values::Milk.neu(: gulp_size)
glass.volume = glass.content - gulp
milk_customer.stomach << gulp

end

6
7

1
1

NN e

N O U AWM - ® 0 D

def gulp_size
milk_customer.mouth.volume || DEFAULT_GULP_SIZE

NN NN N NN

@

www.devconf.ru

ecting layer

Endpoint layer
[Formlayer] ;
9 @» 3| Request model :
2 | Collecti £l 8 :
s ollecting :g| £ i :
> = > §_ £ Validator Builder i | ValueObjects Primitives -
_ S = £ .
5 o S :
3 £ 3
3 2
o« Interactor layer | : A
: '8 :
User ;- Gateway level -; : g :
den | 8 di
Repository layer] - 8
| | T Usecase [} -2 Tl
secase .o | :§ ‘B
J | | I ever 12| 08
2l
| | I |2 '8
| [Adapter layer J) | | | b .
| | | |
| Responce model e
. s i i i e '

eVQOI‘If www.devconf.ru

e Operations
Registrations < Sinatra::Base
R ES Bhuchiag
set
set def initialize(params = {3})
- @validator = Validator.neuw(params)

helpers Helpers

ang def submit
post 2 5 do if validator.valid?
complete! Forms::SignUp.new(params) do |form| fill
check! form.result do perform
status
serialize(form.result.data) else
end end
end 6 end
end

delegate

def fill
@name = valid_params[]
@password valid_params[|
@height Values::Height.new valid_params[
@ueight Values::HWeight.new valid_params[

end

def perform
@result = Interactors::SignUp.call(
name,
passuord,
height,
weight

3‘. e —— e ' www.devconf.ru

Full map

[Endpoint layer |

) :

Request model

Collecting

Y

Controller

Validator Builder ValueObjects Primitives

El ¢
gl 2
gl
5 =
a a
£

Interactor layer

Epe e _GaEw;yEveT - ™ Use case level | .

Processing Repository layer |

|

|

| R

| Handler Mapper
1 |

|

|

|

|

|

y
Controller
A

Command

HandlerError
ValidationError

r

Router

ProcessingError

StandardError

apter |
Ad; layer ;
. Responce model Guard

External i Enti : 2

Handler API Mappet ity S - : :
ValueObjects | 5 E

L L S Primitives I : i

User Storage

Y
Controller

r -
Presentation level

Representation Responce

code

| View Serializer Static
|

¥
Controller

evaonf www.devconf.ru

l Ruby and DDD

That is the Java world. Then you have the new-comers like Ruby. Ruby has a very expressive syntax,
and at this basic level it should be a very good language for DDD (although | haven't heard of much
actual use of it in those sorts of applications yet). Rails has generated a lot of excitement because it
finally seems to make creation of Web Uls as easy as Uls were back in the early 1990s, before the Web.
Right now, this capability has mostly been applied to building some of the vast number of Web
applications which don't have much domain richness behind them, since even these have been painfully
difficult in the past. But my hope is that, as the Ul implementation part of the problem is reduced, that
people will see this as an opportunity to focus more of their attention on the domain. If Ruby usage ever
starts going in that direction, | think it could provide an excellent platform for DDD. (A few infrastructure
pieces would probably have to be filled in.)

Eric Evans 2006

Eevgﬂnf www.devconf.ru

l https://lunapark.dev

AND INTERACTORS

N

@QWITH ENTI

|\ \

Alexander Kudrin - alexander.kudrin@lunapark.dev
Philipp Sorokin - philipp.sorokin@lunapark.dev

Telegram - https://t.me/lunapark_dev

https://t.me/lunapark_dev

