seveonf i deveonrs
Tarantool

A nho-SQL DBMS now
with SQL

Agenda

What is Tarantool?
Performance
Storage engines
Scaling

SQL

Plans

SevEonf

History

e Was born @ Mail.ru group
e Used to store sessions/profiles sessions
of Ms of users

4 instances

—

—
load web-page

==

AJAX request

mobile API

8 instances
Web servers

> 1.000.000 rec
Eevaonf www.devconf.ru

Must-have and mustn't-have

e No secondary keys, constraints etc.
e Schema-less
e Need a language. *QL is not must-have

= High-speed in any sense!
= Simple
= Extensible

e Transactions

e Persistency
e Once again: it must be fast, no excuses

Tarantool: Bird's Eye View

T

e No need for cache: It is in-memory
e But still DBMS: persistency and transactions

= |t regards ACID

e Single threaded: It is lock-free
e Easy: imperative language is on board: Lua

= |t JITs
= |t's easy to program business

e |t scales: Replication and sharding

TARANTOOL

DBMS + Application Server
C, Lua, SQL, Python, PHP, Go, Java, C# ...
Persistent and storage engines
Stored proceduresin C, Lua, SQL

Queries
handling WAL Network

TARANTOOL Coodperative multitasking

Multithreading That is

a stall

e Losses on caches coherency support
e |Losses on locks
e |osses on long operations

Fibers
— e —— ——
) Event-loop .
e Thread is always busy
e | ock-free

e Single core - no coherency issues at all

Vinyl

e |[n-memory is OK, but not always enough
e Write-oriented: LSM tree

e Same APl as memtx

e Transactions, secondary keys

Tarantool/Memix Tarantool/Viny!| MySQL (InncDB), Oracle,
Postgres
Read workload Heavily optimized | Just normal Just normal
Write workload Heavily optimized Heavily optimized | Just normal
Dataset limit RAM RAM x 100 ?

SevEonf

Horizontal

SevEonf

Horizontal scaling

data

tolerance

Replication i @ @@, i Sharding
— I — 5 S S S
ABC ABC ABC E A C B
Scaling computation and fault ! Scaling computation and

Repllcatlon and shardmg

Scaling computation, data afid fault
Eeveonf tolerance www.devconf.ru

Replication

Asynchronous Synchronous
/ \ begin commit

begin —— commit

v

, repare —— replicate
replicate PEEP b

Commit is not waiting for replication to
succeed

Two phase commit. To succeed, need to
replicate to N nodes

€)e Faster
@+ Replicas might lag, conflict

SevEonf

€D ¢ More reliable
@ ¢ Slower, complicated protocols

- |

Sharding

anges Decide where to store? hash 3
IV) cooveoereemmmnenrssmmsessssssiessssmssssssssssssssssssssssssssssessssnes » MaxXx
0000 0000 0000
< <o - — <
— — = — =

Found range where the key belongs ->
found the node

Calculated hash of the key ->
found the node

QG-COCkI'OElCh DB TARANT L
‘mongo

© o Best €) e« Good enough

@ + Complicated e Complex resharding

@ - Usually useless (— Complex queries not fast

Resharding problem

T

shard_id(key) : key — {shard;, shards, ..., shardy}

Change N leads to change of
shard-function

shard_id(keyl) # new_shard_id(key)

Useless data
Qo Need to re-calculate shard- moves

functions for all data

—>

<

—_—

@+ Some data might move on one of
old nodes

... but not in Tarantool land

SevEonf

%
-
=

((,

Virtual sharding

T

Virtual Physical

Data E— E—

nodes nodes

{tuple} @ -
"

{tuple} {tuple} {tuple}
{tuple} {tuple}

A/,/ l \\ shard_id(key) = {bucket,, bucket,, ..., buckety }

OG99 +9 -const s

1/ Shard-function is fixed

((/

TARANTOOL

Eeveonf Yy www;devconf.ru

Sharding

e Ranges
e Hashes
e Virtual buckets

Having a range or a bucket, how to find
where it is stored physically? -
1. Prohibit re-sharding .—'
\‘.‘/‘ 2. Always visit all nodes CouchDB
3. Implement proxy-router! '

TARANTOOL
SevEonf

Why SQL?

T

CREATE TABLE tl (id INTEGER PRIMARY KEY, a INTEGER, b INTEGER, c¢ INTEGER)
CREATE TABLE t2 (id INTEGER PRIMARY KEY, x INTEGER, y INTEGER, z INTEGER)

SQL> SELECT DISTINCT (a)
FROM tl, tZ2
WHERE tl.id = t2.1id
AND t2.y > 1;

SevEonf

Why SQL?

CREATE TABLE tl (id INTEGER PRIMARY KEY, a INTEGER, b INTEGER,

c INTEGER) ﬁ

CREATE TABLE t2 (id INTEGER PRIMARY KEY, x INTEGER, y INTEGER, z INTEGER)

(
function query ()
local join = {}
for , vl in box.space.tl:pairs({}, {iterator='ALL'}) do
local v2 = box.space.t2:get(v1[1l])
if v2[3] > 1 then
table.insert (join, {tl=vl, t2=v2})
end
end
local dist = {}
for , v in pairs(join) do
if dist[v['tl'][2]] == nil then
dist[v['tl'][2]] =1
end
end
local result = {}
for k, in pairs(dist) do

table.insert (result, k)

end
return result end

Eeveonf www.devconf.ru

SQL Features

Trying to be subset of ANSI

Minimum overhead of query planner
ACID transactions, SAVEPOINTSs
left/inner/natural JOIN, UNION/EXCEPT,
subqueries

HAVING, GROUP BY, ORDER BY

WITH RECURSIVE

Triggers

Views

Constraints

Collations

SevEonf

Perspectives

e Onboard sharding
e Synchronous replication
e SQL: more types, JIT, query planner

SevEonf

Sharding

Tarantool VShard

Replication Synchronous/Asynchronous
In-memory memtx engine
BIN vinyl engine, LSM-tree
Persistency Both engines
SQL ANSI
Stored procedures Lua, C, SQL
Audit logging Yes
Connectors to MySQL, Oracle,
DBMSes Memcached
Static build for Linux
GUI Cluster management
Unprecedented 100.000 RPS per instance - easy!

performance

Cnacunbo!

https://tarantool.io
https://github.com/tarantool/tarantool

21

Lag of async replicas

|i! 2, TARANTOOL
e Re-send of lost changes
£ e Rejoin
Lag

slow
network

Complex topologies

P P e Support of arbitrary
= = topologies
e &

) ><)
— @ -
N g — e 22

TARANTOOL

Multikey & JSON in Tarantool

23

Data is Doubling Every Two Years

Unstructured data will account

for more than 80% of the data

collected by organizations

STRUCTURED DATA

1980 1990 2000 2010

x‘f Source: Human-Computer Interaction & Knowledge Discovery in CompleyJastructured, Big Data

2020

© 2016 MapR Technologies

PaJ0]S eje([ejoL

NAPR
24

NoSQL Document

“keylii =
{
Users Address —_— *ID™: 47
"Hame™: “John”,
ID Heame Agre User ID City State “hge: 25
"Hobbdies™: [Football, Hiking).
47 John 25 - . 47 HewYork NY “hddress”: |
—— ;
| b g7 SanRemon CA '
| *City~: “HewYork™,
\ “State”; "NY~
- Jl
Hobbies .
—_—
U=er ID Interese Lity s “Sankemon”,
“Scaca®: “CR"
p a7 Foorball }
1
a7 Hilked ngy)

Storing data in the JSON format is also a natural way to

. o5
ctnrao Aata than in rowwic anAd AFAlliMNAc

