DATALYX:TS evéonf

Kak n 3ayem genatb ceonn ORM
Ha Python

Serge Matveenko
DataArt

github.com/lig

What is ORM?

ORM stays for “Object-relational mapping”

ODM (Object-document mapping) is ORM too

Helps to persist objects no matter what is under the hood
Helps to build complex queries

Knows what the data scheme is looks like

Could help to maintain the DB layer (Code to DB)

Could reflect the DB schema (DB to Code)

Could help to cache data

What we have in Python

SQLAIchemy — very powerful, hard to learn syntax
DjangoORM — powerful enough, easier to learn syntax
PonyORM — not that powerful, awesome syntax

Peewee — SQL powerful, SQL inspired syntax with cookies
MongoEngine — Django like ORM for MongoDB, good for start

SQLAIchemy

class Person (Base) :

__tablename = 'person'
id = Column (Integer, primary key=True)
name = Column (String (250), nullable=False)
engine = create engine ('sqglite:///sglalchemy example.db')
Base.metadata .bind = engine
DBSession = sessionmaker (bind=engine)
session = DBSession ()
new person = Person (name='new person')

session.add (new person)
session.commit ()

person = session.query (Person) .first ()

DjangoORM

class Person (Model) :
name = CharField (max length=250)

new person = Person (name='new person')
new person.save ()

person = Person.objects.first ()

PonyORM

class Person (db.Entity) :
name = Required (str)

with db session:
new person = Person (name='new person')

person = select (p for p in Person) [0]

Custom ORM

ORM is more than mapping

Any Data Schema representation
External Data Validation

Data Processing
Serialization/Deserialization
Awesome way to use Python

Everytime you write ORM

Disclaimer:
just kidding :)

Guido becomes a bit happier

A typical ORM

class Author (Model) :
name = CharField ()

class Book (Model) :

title = CharField ()
year = IntField ()

author = Relation (Author, 'books')
william gibson = Author (name='William Gibson')
count zero = Book (title='Count Zero', year=1986, author=william gibson)

gibsons books = william gibson .books

Basic Field (simple descriptor)

class Field:

def get (self, obj, type=None):
return obj. data[self. name]

def set (self, obj, value):

ggj._data[self._name] = value

Basic Field (machinery)

class ModelMeta (type) :
def new (cls, name, bases, attrs):
for field name, field in attrs.items() :
field. name = field name
attrs [' data'] = StrictDict.fromkeys (attrs.keys())
return type (name, bases, attrs)

class Model (metaclass=ModelMeta) :
pass

class Field:
def get (self, obj, type=None):
return obj. data[self. name]
def set (self, obj, wvalue):

ggj._data[self._name] = value

Simple Validation

class CharField (Field) :

def set (self, obj, value):

if not isinstance (value, str):
raise TypeError (obj, self. name, str, value)

super (). set (obj, value)

Relation

class Relation (Field) :

def init (self, rel model class):
self._rel_model_class = rel_model_class

def set (self, obj, wvalue):

if not isinstance (value, self. rel model class):
raise TypeError (obj, self. name, self. rel model class, value)

super (). set (obj, value)

class Book (Model) :
author = Relation (Author)

Reverse Relation

class Author (Model) :
name = CharField ()

class Book (Model) :
author = Relation (Author, 'books')

william gibson = Author (name='William Gibson')

gibsons books = william gibson .books

Reverse Relation

class Relation (Field) :
def init (self, rel model class, reverse name) :

self. rel model class, self. reverse name = rel model class,
reverse name

class ReverseRelation:
def init (self, origin model, field name) :
self. origin model, self. field name = origin model, field name
def get (self, obj, type=None):
return self. origin model .S.filter (self. field name=obj)

class ModelMeta (type) :
def new (cls, name, bases, attrs):
type new = type (name, bases, attrs)
for field name, field in attrs.items():
if isinstance (field, Relation) :
setattr (field. rel model class, self. reverse name,

ReverseRelation (type new, field name))
return type new

Just a Validation

class ValidatorMeta (type) :
def call (cls, **attrs):
for attr name, attr in attrs.items():
if not isinstance (attr, getattr (cls, attr name)) :
raise TypeError ()
return dict (**attrs)

class Validator (metaclass=ValidatorMeta) :
pass

class FooBar (Validator) :
foo = str

bar = int

FooBar (foo='spam', bar=42) == {'bar': 42, 'foo': 'spam'}

Learn Python magic

Meta classes
Descriptors

Class attributes
Python data model
object. new

type. call
type. Dprepare

object. 1instancecheck

DATAL:TS sevéonf

Thank you!

github.com/lig

